MakeItFrom.com
Menu (ESC)

C95400 Bronze vs. AWS E3155

C95400 bronze belongs to the copper alloys classification, while AWS E3155 belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C95400 bronze and the bottom bar is AWS E3155.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 8.1 to 16
23
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
81
Tensile Strength: Ultimate (UTS), MPa 600 to 710
770

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Melting Completion (Liquidus), °C 1040
1460
Melting Onset (Solidus), °C 1030
1410
Specific Heat Capacity, J/kg-K 440
450
Thermal Conductivity, W/m-K 59
13
Thermal Expansion, µm/m-K 18
13

Otherwise Unclassified Properties

Base Metal Price, % relative 27
70
Density, g/cm3 8.2
8.4
Embodied Carbon, kg CO2/kg material 3.2
7.7
Embodied Energy, MJ/kg 53
110
Embodied Water, L/kg 390
300

Common Calculations

Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 20 to 24
26
Strength to Weight: Bending, points 19 to 22
22
Thermal Diffusivity, mm2/s 16
3.3
Thermal Shock Resistance, points 21 to 25
20

Alloy Composition

Aluminum (Al), % 10 to 11.5
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 83 to 87
0 to 0.75
Iron (Fe), % 3.0 to 5.0
23.3 to 36.3
Manganese (Mn), % 0 to 0.5
1.0 to 2.5
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0 to 1.5
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
2.0 to 3.0
Residuals, % 0 to 0.5
0