MakeItFrom.com
Menu (ESC)

C95400 Bronze vs. C92500 Bronze

Both C95400 bronze and C92500 bronze are copper alloys. They have 86% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C95400 bronze and the bottom bar is C92500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 8.1 to 16
11
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 600 to 710
310
Tensile Strength: Yield (Proof), MPa 240 to 360
190

Thermal Properties

Latent Heat of Fusion, J/g 230
190
Maximum Temperature: Mechanical, °C 230
170
Melting Completion (Liquidus), °C 1040
980
Melting Onset (Solidus), °C 1030
870
Specific Heat Capacity, J/kg-K 440
370
Thermal Conductivity, W/m-K 59
63
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
12
Electrical Conductivity: Equal Weight (Specific), % IACS 14
12

Otherwise Unclassified Properties

Base Metal Price, % relative 27
35
Density, g/cm3 8.2
8.7
Embodied Carbon, kg CO2/kg material 3.2
3.7
Embodied Energy, MJ/kg 53
61
Embodied Water, L/kg 390
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 75
30
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 560
170
Stiffness to Weight: Axial, points 7.7
6.8
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 20 to 24
9.8
Strength to Weight: Bending, points 19 to 22
12
Thermal Diffusivity, mm2/s 16
20
Thermal Shock Resistance, points 21 to 25
12

Alloy Composition

Aluminum (Al), % 10 to 11.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 83 to 87
85 to 88
Iron (Fe), % 3.0 to 5.0
0 to 0.3
Lead (Pb), % 0
1.0 to 1.5
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.5
0.8 to 1.5
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
10 to 12
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.7