MakeItFrom.com
Menu (ESC)

C95400 Bronze vs. S31060 Stainless Steel

C95400 bronze belongs to the copper alloys classification, while S31060 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C95400 bronze and the bottom bar is S31060 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 200
190
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.1 to 16
46
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
78
Tensile Strength: Ultimate (UTS), MPa 600 to 710
680
Tensile Strength: Yield (Proof), MPa 240 to 360
310

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 230
1080
Melting Completion (Liquidus), °C 1040
1420
Melting Onset (Solidus), °C 1030
1370
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 59
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 27
18
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.2
3.4
Embodied Energy, MJ/kg 53
48
Embodied Water, L/kg 390
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 75
260
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 560
250
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 20 to 24
24
Strength to Weight: Bending, points 19 to 22
22
Thermal Diffusivity, mm2/s 16
4.0
Thermal Shock Resistance, points 21 to 25
15

Alloy Composition

Aluminum (Al), % 10 to 11.5
0
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0.050 to 0.1
Cerium (Ce), % 0
0 to 0.070
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 83 to 87
0
Iron (Fe), % 3.0 to 5.0
61.4 to 67.8
Lanthanum (La), % 0
0 to 0.070
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 1.5
10 to 12.5
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0