MakeItFrom.com
Menu (ESC)

C95400 Bronze vs. S35045 Stainless Steel

C95400 bronze belongs to the copper alloys classification, while S35045 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C95400 bronze and the bottom bar is S35045 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.1 to 16
39
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
78
Tensile Strength: Ultimate (UTS), MPa 600 to 710
540
Tensile Strength: Yield (Proof), MPa 240 to 360
190

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 1040
1390
Melting Onset (Solidus), °C 1030
1340
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 59
12
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 27
34
Density, g/cm3 8.2
8.0
Embodied Carbon, kg CO2/kg material 3.2
5.8
Embodied Energy, MJ/kg 53
83
Embodied Water, L/kg 390
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 75
170
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 560
94
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 20 to 24
19
Strength to Weight: Bending, points 19 to 22
19
Thermal Diffusivity, mm2/s 16
3.2
Thermal Shock Resistance, points 21 to 25
12

Alloy Composition

Aluminum (Al), % 10 to 11.5
0.15 to 0.6
Carbon (C), % 0
0.060 to 0.1
Chromium (Cr), % 0
25 to 29
Copper (Cu), % 83 to 87
0 to 0.75
Iron (Fe), % 3.0 to 5.0
29.4 to 42.6
Manganese (Mn), % 0 to 0.5
0 to 1.5
Nickel (Ni), % 0 to 1.5
32 to 37
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.6
Residuals, % 0 to 0.5
0