MakeItFrom.com
Menu (ESC)

C95410 Bronze vs. EN 1.4958 Stainless Steel

C95410 bronze belongs to the copper alloys classification, while EN 1.4958 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C95410 bronze and the bottom bar is EN 1.4958 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 9.1 to 13
40
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Tensile Strength: Ultimate (UTS), MPa 620 to 740
630
Tensile Strength: Yield (Proof), MPa 260 to 380
190

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 230
1090
Melting Completion (Liquidus), °C 1040
1400
Melting Onset (Solidus), °C 1030
1350
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 59
12
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 28
30
Density, g/cm3 8.2
8.0
Embodied Carbon, kg CO2/kg material 3.3
5.3
Embodied Energy, MJ/kg 54
75
Embodied Water, L/kg 390
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57 to 64
190
Resilience: Unit (Modulus of Resilience), kJ/m3 280 to 630
95
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 21 to 25
22
Strength to Weight: Bending, points 20 to 22
20
Thermal Diffusivity, mm2/s 16
3.2
Thermal Shock Resistance, points 22 to 26
15

Alloy Composition

Aluminum (Al), % 10 to 11.5
0.2 to 0.5
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0
19 to 22
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 83 to 85.5
0 to 0.5
Iron (Fe), % 3.0 to 5.0
41.1 to 50.6
Manganese (Mn), % 0 to 0.5
0 to 1.5
Nickel (Ni), % 1.5 to 2.5
30 to 32.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0.2 to 0.5
Residuals, % 0 to 0.5
0