MakeItFrom.com
Menu (ESC)

C95410 Bronze vs. Grade 24 Titanium

C95410 bronze belongs to the copper alloys classification, while grade 24 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C95410 bronze and the bottom bar is grade 24 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 9.1 to 13
11
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 620 to 740
1010
Tensile Strength: Yield (Proof), MPa 260 to 380
940

Thermal Properties

Latent Heat of Fusion, J/g 230
410
Maximum Temperature: Mechanical, °C 230
340
Melting Completion (Liquidus), °C 1040
1610
Melting Onset (Solidus), °C 1030
1560
Specific Heat Capacity, J/kg-K 440
560
Thermal Conductivity, W/m-K 59
7.1
Thermal Expansion, µm/m-K 18
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.0

Otherwise Unclassified Properties

Density, g/cm3 8.2
4.5
Embodied Carbon, kg CO2/kg material 3.3
43
Embodied Energy, MJ/kg 54
710
Embodied Water, L/kg 390
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57 to 64
110
Resilience: Unit (Modulus of Resilience), kJ/m3 280 to 630
4160
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
35
Strength to Weight: Axial, points 21 to 25
63
Strength to Weight: Bending, points 20 to 22
50
Thermal Diffusivity, mm2/s 16
2.9
Thermal Shock Resistance, points 22 to 26
72

Alloy Composition

Aluminum (Al), % 10 to 11.5
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 83 to 85.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 3.0 to 5.0
0 to 0.4
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 1.5 to 2.5
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4