MakeItFrom.com
Menu (ESC)

C95410 Bronze vs. Grade CW6MC Nickel

C95410 bronze belongs to the copper alloys classification, while grade CW6MC nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C95410 bronze and the bottom bar is grade CW6MC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 9.1 to 13
28
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
79
Tensile Strength: Ultimate (UTS), MPa 620 to 740
540
Tensile Strength: Yield (Proof), MPa 260 to 380
310

Thermal Properties

Latent Heat of Fusion, J/g 230
330
Maximum Temperature: Mechanical, °C 230
980
Melting Completion (Liquidus), °C 1040
1480
Melting Onset (Solidus), °C 1030
1430
Specific Heat Capacity, J/kg-K 440
440
Thermal Conductivity, W/m-K 59
11
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 14
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 28
80
Density, g/cm3 8.2
8.6
Embodied Carbon, kg CO2/kg material 3.3
14
Embodied Energy, MJ/kg 54
200
Embodied Water, L/kg 390
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57 to 64
130
Resilience: Unit (Modulus of Resilience), kJ/m3 280 to 630
240
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 21 to 25
18
Strength to Weight: Bending, points 20 to 22
17
Thermal Diffusivity, mm2/s 16
2.8
Thermal Shock Resistance, points 22 to 26
15

Alloy Composition

Aluminum (Al), % 10 to 11.5
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 83 to 85.5
0
Iron (Fe), % 3.0 to 5.0
0 to 5.0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 1.5 to 2.5
55.4 to 68.9
Niobium (Nb), % 0
3.2 to 4.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0