MakeItFrom.com
Menu (ESC)

C95500 Bronze vs. ACI-ASTM CA28MWV Steel

C95500 bronze belongs to the copper alloys classification, while ACI-ASTM CA28MWV steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95500 bronze and the bottom bar is ACI-ASTM CA28MWV steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
330
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.4 to 10
11
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Tensile Strength: Ultimate (UTS), MPa 700 to 850
1080
Tensile Strength: Yield (Proof), MPa 320 to 470
870

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 230
740
Melting Completion (Liquidus), °C 1050
1470
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 42
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
4.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
5.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
11
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 3.5
3.1
Embodied Energy, MJ/kg 57
44
Embodied Water, L/kg 390
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58 to 61
110
Resilience: Unit (Modulus of Resilience), kJ/m3 420 to 950
1920
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 24 to 29
38
Strength to Weight: Bending, points 21 to 24
30
Thermal Diffusivity, mm2/s 11
6.6
Thermal Shock Resistance, points 24 to 29
40

Alloy Composition

Aluminum (Al), % 10 to 11.5
0
Carbon (C), % 0
0.2 to 0.28
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 78 to 84
0
Iron (Fe), % 3.0 to 5.0
81.4 to 85.8
Manganese (Mn), % 0 to 3.5
0.5 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.3
Nickel (Ni), % 3.0 to 5.5
0.5 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0.9 to 1.3
Vanadium (V), % 0
0.2 to 0.3
Residuals, % 0 to 0.5
0