MakeItFrom.com
Menu (ESC)

C95500 Bronze vs. AISI 440C Stainless Steel

C95500 bronze belongs to the copper alloys classification, while AISI 440C stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C95500 bronze and the bottom bar is AISI 440C stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.4 to 10
2.0 to 14
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Tensile Strength: Ultimate (UTS), MPa 700 to 850
710 to 1970
Tensile Strength: Yield (Proof), MPa 320 to 470
450 to 1900

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 230
870
Melting Completion (Liquidus), °C 1050
1480
Melting Onset (Solidus), °C 1040
1370
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 42
22
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.0
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 3.5
2.2
Embodied Energy, MJ/kg 57
31
Embodied Water, L/kg 390
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58 to 61
39 to 88
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 24 to 29
26 to 71
Strength to Weight: Bending, points 21 to 24
23 to 46
Thermal Diffusivity, mm2/s 11
6.0
Thermal Shock Resistance, points 24 to 29
26 to 71

Alloy Composition

Aluminum (Al), % 10 to 11.5
0
Carbon (C), % 0
1.0 to 1.2
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 78 to 84
0
Iron (Fe), % 3.0 to 5.0
78 to 83.1
Manganese (Mn), % 0 to 3.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 3.0 to 5.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Residuals, % 0 to 0.5
0