MakeItFrom.com
Menu (ESC)

C95500 Bronze vs. AWS E33-31

C95500 bronze belongs to the copper alloys classification, while AWS E33-31 belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C95500 bronze and the bottom bar is AWS E33-31.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 8.4 to 10
29
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
81
Tensile Strength: Ultimate (UTS), MPa 700 to 850
810

Thermal Properties

Latent Heat of Fusion, J/g 230
320
Melting Completion (Liquidus), °C 1050
1380
Melting Onset (Solidus), °C 1040
1330
Specific Heat Capacity, J/kg-K 450
480
Thermal Expansion, µm/m-K 18
14

Otherwise Unclassified Properties

Base Metal Price, % relative 28
36
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 3.5
6.0
Embodied Energy, MJ/kg 57
86
Embodied Water, L/kg 390
260

Common Calculations

Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 24 to 29
28
Strength to Weight: Bending, points 21 to 24
24
Thermal Shock Resistance, points 24 to 29
19

Alloy Composition

Aluminum (Al), % 10 to 11.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
31 to 35
Copper (Cu), % 78 to 84
0.4 to 0.8
Iron (Fe), % 3.0 to 5.0
24.7 to 34.8
Manganese (Mn), % 0 to 3.5
2.5 to 4.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 3.0 to 5.5
30 to 32
Nitrogen (N), % 0
0.3 to 0.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.9
Sulfur (S), % 0
0 to 0.010
Residuals, % 0 to 0.5
0