MakeItFrom.com
Menu (ESC)

C95500 Bronze vs. EN 1.0214 Steel

C95500 bronze belongs to the copper alloys classification, while EN 1.0214 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C95500 bronze and the bottom bar is EN 1.0214 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
97 to 130
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.4 to 10
12 to 31
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Tensile Strength: Ultimate (UTS), MPa 700 to 850
330 to 460
Tensile Strength: Yield (Proof), MPa 320 to 470
210 to 360

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 230
400
Melting Completion (Liquidus), °C 1050
1470
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 42
53
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 28
1.8
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 3.5
1.4
Embodied Energy, MJ/kg 57
18
Embodied Water, L/kg 390
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58 to 61
34 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 420 to 950
120 to 340
Stiffness to Weight: Axial, points 8.0
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 24 to 29
12 to 16
Strength to Weight: Bending, points 21 to 24
14 to 17
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 24 to 29
11 to 14

Alloy Composition

Aluminum (Al), % 10 to 11.5
0.020 to 0.060
Carbon (C), % 0
0.080 to 0.12
Copper (Cu), % 78 to 84
0
Iron (Fe), % 3.0 to 5.0
99.17 to 99.6
Manganese (Mn), % 0 to 3.5
0.3 to 0.5
Nickel (Ni), % 3.0 to 5.5
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Residuals, % 0 to 0.5
0