MakeItFrom.com
Menu (ESC)

C95500 Bronze vs. EN 1.4762 Stainless Steel

C95500 bronze belongs to the copper alloys classification, while EN 1.4762 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95500 bronze and the bottom bar is EN 1.4762 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
190
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.4 to 10
13
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
78
Tensile Strength: Ultimate (UTS), MPa 700 to 850
620
Tensile Strength: Yield (Proof), MPa 320 to 470
310

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 230
1150
Melting Completion (Liquidus), °C 1050
1410
Melting Onset (Solidus), °C 1040
1370
Specific Heat Capacity, J/kg-K 450
490
Thermal Conductivity, W/m-K 42
17
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 28
12
Density, g/cm3 8.2
7.6
Embodied Carbon, kg CO2/kg material 3.5
2.5
Embodied Energy, MJ/kg 57
37
Embodied Water, L/kg 390
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58 to 61
67
Resilience: Unit (Modulus of Resilience), kJ/m3 420 to 950
250
Stiffness to Weight: Axial, points 8.0
15
Stiffness to Weight: Bending, points 20
26
Strength to Weight: Axial, points 24 to 29
23
Strength to Weight: Bending, points 21 to 24
21
Thermal Diffusivity, mm2/s 11
4.6
Thermal Shock Resistance, points 24 to 29
22

Alloy Composition

Aluminum (Al), % 10 to 11.5
1.2 to 1.7
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
23 to 26
Copper (Cu), % 78 to 84
0
Iron (Fe), % 3.0 to 5.0
69.7 to 75.1
Manganese (Mn), % 0 to 3.5
0 to 1.0
Nickel (Ni), % 3.0 to 5.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0.7 to 1.4
Sulfur (S), % 0
0 to 0.015
Residuals, % 0 to 0.5
0