MakeItFrom.com
Menu (ESC)

C95500 Bronze vs. EN 1.7703 Steel

C95500 bronze belongs to the copper alloys classification, while EN 1.7703 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95500 bronze and the bottom bar is EN 1.7703 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.4 to 10
20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
74
Tensile Strength: Ultimate (UTS), MPa 700 to 850
670 to 690
Tensile Strength: Yield (Proof), MPa 320 to 470
460 to 500

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 230
460
Melting Completion (Liquidus), °C 1050
1470
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 42
39
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 28
4.2
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 3.5
2.5
Embodied Energy, MJ/kg 57
35
Embodied Water, L/kg 390
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58 to 61
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 420 to 950
570 to 650
Stiffness to Weight: Axial, points 8.0
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 24 to 29
24
Strength to Weight: Bending, points 21 to 24
22
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 24 to 29
19 to 20

Alloy Composition

Aluminum (Al), % 10 to 11.5
0
Carbon (C), % 0
0.11 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 78 to 84
0 to 0.2
Iron (Fe), % 3.0 to 5.0
94.6 to 96.4
Manganese (Mn), % 0 to 3.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 3.0 to 5.5
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.25 to 0.35
Residuals, % 0 to 0.5
0