MakeItFrom.com
Menu (ESC)

C95500 Bronze vs. EN AC-43400 Aluminum

C95500 bronze belongs to the copper alloys classification, while EN AC-43400 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C95500 bronze and the bottom bar is EN AC-43400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
80
Elastic (Young's, Tensile) Modulus, GPa 120
72
Elongation at Break, % 8.4 to 10
1.1
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
27
Tensile Strength: Ultimate (UTS), MPa 700 to 850
270
Tensile Strength: Yield (Proof), MPa 320 to 470
160

Thermal Properties

Latent Heat of Fusion, J/g 230
540
Maximum Temperature: Mechanical, °C 230
170
Melting Completion (Liquidus), °C 1050
600
Melting Onset (Solidus), °C 1040
590
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 42
140
Thermal Expansion, µm/m-K 18
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
32
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
110

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.5
Density, g/cm3 8.2
2.6
Embodied Carbon, kg CO2/kg material 3.5
7.8
Embodied Energy, MJ/kg 57
150
Embodied Water, L/kg 390
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58 to 61
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 420 to 950
180
Stiffness to Weight: Axial, points 8.0
15
Stiffness to Weight: Bending, points 20
54
Strength to Weight: Axial, points 24 to 29
29
Strength to Weight: Bending, points 21 to 24
36
Thermal Diffusivity, mm2/s 11
59
Thermal Shock Resistance, points 24 to 29
12

Alloy Composition

Aluminum (Al), % 10 to 11.5
86 to 90.8
Copper (Cu), % 78 to 84
0 to 0.1
Iron (Fe), % 3.0 to 5.0
0 to 1.0
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 0 to 3.5
0 to 0.55
Nickel (Ni), % 3.0 to 5.5
0 to 0.15
Silicon (Si), % 0
9.0 to 11
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15