MakeItFrom.com
Menu (ESC)

C95500 Bronze vs. Grade 36 Titanium

C95500 bronze belongs to the copper alloys classification, while grade 36 titanium belongs to the titanium alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C95500 bronze and the bottom bar is grade 36 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 8.4 to 10
11
Poisson's Ratio 0.34
0.36
Shear Modulus, GPa 44
39
Tensile Strength: Ultimate (UTS), MPa 700 to 850
530
Tensile Strength: Yield (Proof), MPa 320 to 470
520

Thermal Properties

Latent Heat of Fusion, J/g 230
370
Maximum Temperature: Mechanical, °C 230
320
Melting Completion (Liquidus), °C 1050
2020
Melting Onset (Solidus), °C 1040
1950
Specific Heat Capacity, J/kg-K 450
420
Thermal Expansion, µm/m-K 18
8.1

Otherwise Unclassified Properties

Density, g/cm3 8.2
6.3
Embodied Carbon, kg CO2/kg material 3.5
58
Embodied Energy, MJ/kg 57
920
Embodied Water, L/kg 390
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58 to 61
59
Resilience: Unit (Modulus of Resilience), kJ/m3 420 to 950
1260
Stiffness to Weight: Axial, points 8.0
9.3
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 24 to 29
23
Strength to Weight: Bending, points 21 to 24
23
Thermal Shock Resistance, points 24 to 29
45

Alloy Composition

Aluminum (Al), % 10 to 11.5
0
Carbon (C), % 0
0 to 0.030
Copper (Cu), % 78 to 84
0
Hydrogen (H), % 0
0 to 0.0035
Iron (Fe), % 3.0 to 5.0
0 to 0.030
Manganese (Mn), % 0 to 3.5
0
Nickel (Ni), % 3.0 to 5.5
0
Niobium (Nb), % 0
42 to 47
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.16
Titanium (Ti), % 0
52.3 to 58
Residuals, % 0
0 to 0.4