MakeItFrom.com
Menu (ESC)

C95500 Bronze vs. N08810 Stainless Steel

C95500 bronze belongs to the copper alloys classification, while N08810 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C95500 bronze and the bottom bar is N08810 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.4 to 10
33
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 700 to 850
520
Tensile Strength: Yield (Proof), MPa 320 to 470
200

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 1050
1400
Melting Onset (Solidus), °C 1040
1350
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 42
12
Thermal Expansion, µm/m-K 18
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 28
30
Density, g/cm3 8.2
8.0
Embodied Carbon, kg CO2/kg material 3.5
5.3
Embodied Energy, MJ/kg 57
76
Embodied Water, L/kg 390
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58 to 61
140
Resilience: Unit (Modulus of Resilience), kJ/m3 420 to 950
100
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 24 to 29
18
Strength to Weight: Bending, points 21 to 24
18
Thermal Diffusivity, mm2/s 11
3.0
Thermal Shock Resistance, points 24 to 29
13

Alloy Composition

Aluminum (Al), % 10 to 11.5
0.15 to 0.6
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 78 to 84
0 to 0.75
Iron (Fe), % 3.0 to 5.0
39.5 to 50.7
Manganese (Mn), % 0 to 3.5
0 to 1.5
Nickel (Ni), % 3.0 to 5.5
30 to 35
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.6
Residuals, % 0 to 0.5
0