MakeItFrom.com
Menu (ESC)

C95520 Bronze vs. ACI-ASTM CB6 Steel

C95520 bronze belongs to the copper alloys classification, while ACI-ASTM CB6 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C95520 bronze and the bottom bar is ACI-ASTM CB6 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.6
18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 970
880
Tensile Strength: Yield (Proof), MPa 530
660

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 240
870
Melting Completion (Liquidus), °C 1070
1440
Melting Onset (Solidus), °C 1020
1390
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 40
17
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
12
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.6
2.5
Embodied Energy, MJ/kg 58
36
Embodied Water, L/kg 390
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
150
Resilience: Unit (Modulus of Resilience), kJ/m3 1210
1110
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 33
32
Strength to Weight: Bending, points 27
26
Thermal Diffusivity, mm2/s 11
4.6
Thermal Shock Resistance, points 33
31

Alloy Composition

Aluminum (Al), % 10.5 to 11.5
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.050
15.5 to 17.5
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.5 to 81.3
0
Iron (Fe), % 4.0 to 5.5
74.4 to 81
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 4.2 to 6.0
3.5 to 5.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0