MakeItFrom.com
Menu (ESC)

C95520 Bronze vs. AISI 301L Stainless Steel

C95520 bronze belongs to the copper alloys classification, while AISI 301L stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95520 bronze and the bottom bar is AISI 301L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280
210 to 320
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.6
22 to 50
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 970
620 to 1040
Tensile Strength: Yield (Proof), MPa 530
250 to 790

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 240
890
Melting Completion (Liquidus), °C 1070
1430
Melting Onset (Solidus), °C 1020
1390
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 40
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 29
13
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.6
2.7
Embodied Energy, MJ/kg 58
39
Embodied Water, L/kg 390
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 1210
160 to 1580
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 33
22 to 37
Strength to Weight: Bending, points 27
21 to 29
Thermal Diffusivity, mm2/s 11
4.1
Thermal Shock Resistance, points 33
14 to 24

Alloy Composition

Aluminum (Al), % 10.5 to 11.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.050
16 to 18
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.5 to 81.3
0
Iron (Fe), % 4.0 to 5.5
70.7 to 78
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0 to 2.0
Nickel (Ni), % 4.2 to 6.0
6.0 to 8.0
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0