MakeItFrom.com
Menu (ESC)

C95520 Bronze vs. AISI 439 Stainless Steel

C95520 bronze belongs to the copper alloys classification, while AISI 439 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C95520 bronze and the bottom bar is AISI 439 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280
160
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.6
23
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 970
490
Tensile Strength: Yield (Proof), MPa 530
250

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 240
890
Melting Completion (Liquidus), °C 1070
1510
Melting Onset (Solidus), °C 1020
1430
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 40
25
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 12
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.0
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 3.6
2.3
Embodied Energy, MJ/kg 58
34
Embodied Water, L/kg 390
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
95
Resilience: Unit (Modulus of Resilience), kJ/m3 1210
160
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 33
18
Strength to Weight: Bending, points 27
18
Thermal Diffusivity, mm2/s 11
6.7
Thermal Shock Resistance, points 33
16

Alloy Composition

Aluminum (Al), % 10.5 to 11.5
0 to 0.15
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.050
17 to 19
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.5 to 81.3
0
Iron (Fe), % 4.0 to 5.5
77.1 to 82.8
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Nickel (Ni), % 4.2 to 6.0
0 to 0.5
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
0.2 to 1.1
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0