MakeItFrom.com
Menu (ESC)

C95520 Bronze vs. ASTM A387 Grade 21L Class 1

C95520 bronze belongs to the copper alloys classification, while ASTM A387 grade 21L class 1 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C95520 bronze and the bottom bar is ASTM A387 grade 21L class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280
150
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.6
21
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 44
74
Tensile Strength: Ultimate (UTS), MPa 970
500
Tensile Strength: Yield (Proof), MPa 530
230

Thermal Properties

Latent Heat of Fusion, J/g 240
260
Maximum Temperature: Mechanical, °C 240
480
Melting Completion (Liquidus), °C 1070
1470
Melting Onset (Solidus), °C 1020
1430
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 40
41
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 29
4.1
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 3.6
1.8
Embodied Energy, MJ/kg 58
23
Embodied Water, L/kg 390
62

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
84
Resilience: Unit (Modulus of Resilience), kJ/m3 1210
140
Stiffness to Weight: Axial, points 8.0
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 33
18
Strength to Weight: Bending, points 27
18
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 33
14

Alloy Composition

Aluminum (Al), % 10.5 to 11.5
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.050
2.8 to 3.3
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.5 to 81.3
0
Iron (Fe), % 4.0 to 5.5
94.4 to 96.1
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 4.2 to 6.0
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0