MakeItFrom.com
Menu (ESC)

C95520 Bronze vs. EN 1.3521 Steel

C95520 bronze belongs to the copper alloys classification, while EN 1.3521 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95520 bronze and the bottom bar is EN 1.3521 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 120
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 44
73
Tensile Strength: Ultimate (UTS), MPa 970
490 to 1390

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 240
420
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1020
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 40
45
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
2.3
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.6
1.5
Embodied Energy, MJ/kg 58
19
Embodied Water, L/kg 390
52

Common Calculations

Stiffness to Weight: Axial, points 8.0
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 33
17 to 49
Strength to Weight: Bending, points 27
18 to 35
Thermal Diffusivity, mm2/s 11
12
Thermal Shock Resistance, points 33
14 to 41

Alloy Composition

Aluminum (Al), % 10.5 to 11.5
0 to 0.050
Carbon (C), % 0
0.14 to 0.19
Chromium (Cr), % 0 to 0.050
0.8 to 1.1
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.5 to 81.3
0 to 0.3
Iron (Fe), % 4.0 to 5.5
96.8 to 98.2
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
1.0 to 1.3
Nickel (Ni), % 4.2 to 6.0
0
Oxygen (O), % 0
0 to 0.0020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0