MakeItFrom.com
Menu (ESC)

C95520 Bronze vs. EN 1.4613 Stainless Steel

C95520 bronze belongs to the copper alloys classification, while EN 1.4613 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95520 bronze and the bottom bar is EN 1.4613 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280
180
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.6
21
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 44
79
Tensile Strength: Ultimate (UTS), MPa 970
530
Tensile Strength: Yield (Proof), MPa 530
280

Thermal Properties

Latent Heat of Fusion, J/g 240
290
Maximum Temperature: Mechanical, °C 240
1050
Melting Completion (Liquidus), °C 1070
1430
Melting Onset (Solidus), °C 1020
1390
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 40
19
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
12
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 3.6
2.6
Embodied Energy, MJ/kg 58
38
Embodied Water, L/kg 390
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
91
Resilience: Unit (Modulus of Resilience), kJ/m3 1210
190
Stiffness to Weight: Axial, points 8.0
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 33
19
Strength to Weight: Bending, points 27
19
Thermal Diffusivity, mm2/s 11
5.2
Thermal Shock Resistance, points 33
18

Alloy Composition

Aluminum (Al), % 10.5 to 11.5
0 to 0.050
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.050
22 to 25
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.5 to 81.3
0 to 0.5
Iron (Fe), % 4.0 to 5.5
70.3 to 77.8
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 4.2 to 6.0
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
0.2 to 1.0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0