MakeItFrom.com
Menu (ESC)

C95520 Bronze vs. EN 1.5520 Steel

C95520 bronze belongs to the copper alloys classification, while EN 1.5520 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C95520 bronze and the bottom bar is EN 1.5520 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280
120 to 170
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.6
11 to 21
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 44
73
Tensile Strength: Ultimate (UTS), MPa 970
410 to 1410
Tensile Strength: Yield (Proof), MPa 530
300 to 480

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 240
400
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1020
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 40
50
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.9
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.6
1.4
Embodied Energy, MJ/kg 58
19
Embodied Water, L/kg 390
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
42 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 1210
240 to 600
Stiffness to Weight: Axial, points 8.0
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 33
15 to 50
Strength to Weight: Bending, points 27
16 to 36
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 33
12 to 41

Alloy Composition

Aluminum (Al), % 10.5 to 11.5
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0 to 0.050
0 to 0.3
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.5 to 81.3
0 to 0.25
Iron (Fe), % 4.0 to 5.5
97.7 to 98.9
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0.9 to 1.2
Nickel (Ni), % 4.2 to 6.0
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0