MakeItFrom.com
Menu (ESC)

C95520 Bronze vs. Nickel 625

C95520 bronze belongs to the copper alloys classification, while nickel 625 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95520 bronze and the bottom bar is nickel 625.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.6
33 to 34
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 44
79
Tensile Strength: Ultimate (UTS), MPa 970
790 to 910
Tensile Strength: Yield (Proof), MPa 530
320 to 450

Thermal Properties

Latent Heat of Fusion, J/g 240
330
Maximum Temperature: Mechanical, °C 240
980
Melting Completion (Liquidus), °C 1070
1350
Melting Onset (Solidus), °C 1020
1290
Specific Heat Capacity, J/kg-K 450
440
Thermal Conductivity, W/m-K 40
11
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 12
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
80
Density, g/cm3 8.2
8.6
Embodied Carbon, kg CO2/kg material 3.6
14
Embodied Energy, MJ/kg 58
190
Embodied Water, L/kg 390
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
220 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 1210
260 to 490
Stiffness to Weight: Axial, points 8.0
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 33
26 to 29
Strength to Weight: Bending, points 27
22 to 24
Thermal Diffusivity, mm2/s 11
2.9
Thermal Shock Resistance, points 33
22 to 25

Alloy Composition

Aluminum (Al), % 10.5 to 11.5
0 to 0.4
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.050
20 to 23
Cobalt (Co), % 0 to 0.2
0 to 1.0
Copper (Cu), % 74.5 to 81.3
0
Iron (Fe), % 4.0 to 5.5
0 to 5.0
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0 to 0.5
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 4.2 to 6.0
58 to 68.9
Niobium (Nb), % 0
3.2 to 4.2
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.15
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
0 to 0.4
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0