MakeItFrom.com
Menu (ESC)

C95520 Bronze vs. SAE-AISI 1022 Steel

C95520 bronze belongs to the copper alloys classification, while SAE-AISI 1022 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C95520 bronze and the bottom bar is SAE-AISI 1022 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280
150 to 160
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.6
17 to 26
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 44
73
Tensile Strength: Ultimate (UTS), MPa 970
480 to 550
Tensile Strength: Yield (Proof), MPa 530
260 to 450

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 240
400
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1020
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 40
52
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.8
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 3.6
1.4
Embodied Energy, MJ/kg 58
18
Embodied Water, L/kg 390
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
88 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1210
190 to 530
Stiffness to Weight: Axial, points 8.0
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 33
17 to 19
Strength to Weight: Bending, points 27
17 to 19
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 33
15 to 17

Alloy Composition

Aluminum (Al), % 10.5 to 11.5
0
Carbon (C), % 0
0.18 to 0.23
Chromium (Cr), % 0 to 0.050
0
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.5 to 81.3
0
Iron (Fe), % 4.0 to 5.5
98.7 to 99.12
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0.7 to 1.0
Nickel (Ni), % 4.2 to 6.0
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0