MakeItFrom.com
Menu (ESC)

C95520 Bronze vs. S42030 Stainless Steel

C95520 bronze belongs to the copper alloys classification, while S42030 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C95520 bronze and the bottom bar is S42030 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.6
16
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 44
76
Tensile Strength: Ultimate (UTS), MPa 970
670
Tensile Strength: Yield (Proof), MPa 530
410

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 240
780
Melting Completion (Liquidus), °C 1070
1450
Melting Onset (Solidus), °C 1020
1410
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 40
28
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 12
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 29
10
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.6
2.5
Embodied Energy, MJ/kg 58
34
Embodied Water, L/kg 390
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
92
Resilience: Unit (Modulus of Resilience), kJ/m3 1210
440
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 33
24
Strength to Weight: Bending, points 27
22
Thermal Diffusivity, mm2/s 11
7.7
Thermal Shock Resistance, points 33
24

Alloy Composition

Aluminum (Al), % 10.5 to 11.5
0
Carbon (C), % 0
0 to 0.3
Chromium (Cr), % 0 to 0.050
12 to 14
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.5 to 81.3
2.0 to 3.0
Iron (Fe), % 4.0 to 5.5
77.6 to 85
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
1.0 to 3.0
Nickel (Ni), % 4.2 to 6.0
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0