MakeItFrom.com
Menu (ESC)

C95520 Bronze vs. S43940 Stainless Steel

C95520 bronze belongs to the copper alloys classification, while S43940 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C95520 bronze and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280
160
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.6
21
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 970
490
Tensile Strength: Yield (Proof), MPa 530
280

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 240
890
Melting Completion (Liquidus), °C 1070
1440
Melting Onset (Solidus), °C 1020
1400
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 40
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 12
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
12
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 3.6
2.6
Embodied Energy, MJ/kg 58
38
Embodied Water, L/kg 390
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
86
Resilience: Unit (Modulus of Resilience), kJ/m3 1210
200
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 33
18
Strength to Weight: Bending, points 27
18
Thermal Diffusivity, mm2/s 11
6.8
Thermal Shock Resistance, points 33
18

Alloy Composition

Aluminum (Al), % 10.5 to 11.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.050
17.5 to 18.5
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.5 to 81.3
0
Iron (Fe), % 4.0 to 5.5
78.2 to 82.1
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Nickel (Ni), % 4.2 to 6.0
0
Niobium (Nb), % 0
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
0.1 to 0.6
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0