MakeItFrom.com
Menu (ESC)

C95600 Bronze vs. EN 1.4110 Stainless Steel

C95600 bronze belongs to the copper alloys classification, while EN 1.4110 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95600 bronze and the bottom bar is EN 1.4110 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 15
11 to 14
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 500
770 to 1720
Tensile Strength: Yield (Proof), MPa 230
430 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 210
790
Melting Completion (Liquidus), °C 1000
1440
Melting Onset (Solidus), °C 980
1400
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 39
30
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 28
8.0
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.3
Embodied Energy, MJ/kg 50
33
Embodied Water, L/kg 360
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
90 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 230
480 to 4550
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 17
28 to 62
Strength to Weight: Bending, points 17
24 to 41
Thermal Diffusivity, mm2/s 11
8.1
Thermal Shock Resistance, points 18
27 to 60

Alloy Composition

Aluminum (Al), % 6.0 to 8.0
0
Carbon (C), % 0
0.48 to 0.6
Chromium (Cr), % 0
13 to 15
Copper (Cu), % 88 to 92.2
0
Iron (Fe), % 0
81.4 to 86
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 0.8
Nickel (Ni), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.8 to 3.2
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Vanadium (V), % 0
0 to 0.15
Residuals, % 0 to 1.0
0