MakeItFrom.com
Menu (ESC)

C95600 Bronze vs. EN 1.4567 Stainless Steel

C95600 bronze belongs to the copper alloys classification, while EN 1.4567 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C95600 bronze and the bottom bar is EN 1.4567 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 15
22 to 51
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 500
550 to 780
Tensile Strength: Yield (Proof), MPa 230
200 to 390

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Maximum Temperature: Mechanical, °C 210
930
Melting Completion (Liquidus), °C 1000
1410
Melting Onset (Solidus), °C 980
1370
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 39
11
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 28
16
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.0
3.1
Embodied Energy, MJ/kg 50
43
Embodied Water, L/kg 360
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
150 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 230
100 to 400
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 17
19 to 27
Strength to Weight: Bending, points 17
19 to 24
Thermal Diffusivity, mm2/s 11
3.0
Thermal Shock Resistance, points 18
12 to 17

Alloy Composition

Aluminum (Al), % 6.0 to 8.0
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 88 to 92.2
3.0 to 4.0
Iron (Fe), % 0
63.3 to 71.5
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 0.25
8.5 to 10.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 1.8 to 3.2
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Residuals, % 0 to 1.0
0