MakeItFrom.com
Menu (ESC)

C95600 Bronze vs. EN 1.4945 Stainless Steel

C95600 bronze belongs to the copper alloys classification, while EN 1.4945 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C95600 bronze and the bottom bar is EN 1.4945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 15
19 to 34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 500
640 to 740
Tensile Strength: Yield (Proof), MPa 230
290 to 550

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Maximum Temperature: Mechanical, °C 210
920
Melting Completion (Liquidus), °C 1000
1490
Melting Onset (Solidus), °C 980
1440
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 39
14
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 28
30
Density, g/cm3 8.3
8.1
Embodied Carbon, kg CO2/kg material 3.0
5.0
Embodied Energy, MJ/kg 50
73
Embodied Water, L/kg 360
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
130 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 230
210 to 760
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 17
22 to 25
Strength to Weight: Bending, points 17
20 to 22
Thermal Diffusivity, mm2/s 11
3.7
Thermal Shock Resistance, points 18
14 to 16

Alloy Composition

Aluminum (Al), % 6.0 to 8.0
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 88 to 92.2
0
Iron (Fe), % 0
57.9 to 65.7
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0 to 0.25
15.5 to 17.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0
0.060 to 0.14
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 1.8 to 3.2
0.3 to 0.6
Sulfur (S), % 0
0 to 0.015
Tungsten (W), % 0
2.5 to 3.5
Residuals, % 0 to 1.0
0