MakeItFrom.com
Menu (ESC)

C95600 Bronze vs. EN 1.6579 Steel

C95600 bronze belongs to the copper alloys classification, while EN 1.6579 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95600 bronze and the bottom bar is EN 1.6579 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 15
11 to 14
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 500
850 to 980
Tensile Strength: Yield (Proof), MPa 230
600 to 910

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 210
440
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 980
1410
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 39
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 28
3.7
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.7
Embodied Energy, MJ/kg 50
22
Embodied Water, L/kg 360
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
100 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 230
950 to 2210
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 17
30 to 35
Strength to Weight: Bending, points 17
25 to 28
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 18
25 to 29

Alloy Composition

Aluminum (Al), % 6.0 to 8.0
0
Carbon (C), % 0
0.32 to 0.38
Chromium (Cr), % 0
1.4 to 1.7
Copper (Cu), % 88 to 92.2
0
Iron (Fe), % 0
94.2 to 96.1
Manganese (Mn), % 0
0.6 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.35
Nickel (Ni), % 0 to 0.25
1.4 to 1.7
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 1.8 to 3.2
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 1.0
0