MakeItFrom.com
Menu (ESC)

C95600 Bronze vs. S41425 Stainless Steel

C95600 bronze belongs to the copper alloys classification, while S41425 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C95600 bronze and the bottom bar is S41425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 15
17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 500
920
Tensile Strength: Yield (Proof), MPa 230
750

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 210
810
Melting Completion (Liquidus), °C 1000
1450
Melting Onset (Solidus), °C 980
1410
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 39
16
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 28
13
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 3.0
2.9
Embodied Energy, MJ/kg 50
40
Embodied Water, L/kg 360
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
150
Resilience: Unit (Modulus of Resilience), kJ/m3 230
1420
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 17
33
Strength to Weight: Bending, points 17
27
Thermal Diffusivity, mm2/s 11
4.4
Thermal Shock Resistance, points 18
33

Alloy Composition

Aluminum (Al), % 6.0 to 8.0
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12 to 15
Copper (Cu), % 88 to 92.2
0 to 0.3
Iron (Fe), % 0
74 to 81.9
Manganese (Mn), % 0
0.5 to 1.0
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0 to 0.25
4.0 to 7.0
Nitrogen (N), % 0
0.060 to 0.12
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 1.8 to 3.2
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Residuals, % 0 to 1.0
0