MakeItFrom.com
Menu (ESC)

C95700 Bronze vs. N08810 Stainless Steel

C95700 bronze belongs to the copper alloys classification, while N08810 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95700 bronze and the bottom bar is N08810 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
200
Elongation at Break, % 23
33
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 47
77
Tensile Strength: Ultimate (UTS), MPa 680
520
Tensile Strength: Yield (Proof), MPa 310
200

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 990
1400
Melting Onset (Solidus), °C 950
1350
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 12
12
Thermal Expansion, µm/m-K 18
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 26
30
Density, g/cm3 8.2
8.0
Embodied Carbon, kg CO2/kg material 3.3
5.3
Embodied Energy, MJ/kg 54
76
Embodied Water, L/kg 360
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
140
Resilience: Unit (Modulus of Resilience), kJ/m3 390
100
Stiffness to Weight: Axial, points 8.5
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 23
18
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 3.3
3.0
Thermal Shock Resistance, points 21
13

Alloy Composition

Aluminum (Al), % 7.0 to 8.5
0.15 to 0.6
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 71 to 78.5
0 to 0.75
Iron (Fe), % 2.0 to 4.0
39.5 to 50.7
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 11 to 14
0 to 1.5
Nickel (Ni), % 1.5 to 3.0
30 to 35
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.6
Residuals, % 0 to 0.5
0