MakeItFrom.com
Menu (ESC)

C95700 Bronze vs. S44535 Stainless Steel

C95700 bronze belongs to the copper alloys classification, while S44535 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C95700 bronze and the bottom bar is S44535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
200
Elongation at Break, % 23
28
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 47
78
Tensile Strength: Ultimate (UTS), MPa 680
450
Tensile Strength: Yield (Proof), MPa 310
290

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 220
1000
Melting Completion (Liquidus), °C 990
1430
Melting Onset (Solidus), °C 950
1390
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 12
21
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 26
11
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 3.3
2.4
Embodied Energy, MJ/kg 54
34
Embodied Water, L/kg 360
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 390
200
Stiffness to Weight: Axial, points 8.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 23
16
Strength to Weight: Bending, points 21
17
Thermal Diffusivity, mm2/s 3.3
5.6
Thermal Shock Resistance, points 21
15

Alloy Composition

Aluminum (Al), % 7.0 to 8.5
0 to 0.5
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 24
Copper (Cu), % 71 to 78.5
0 to 0.5
Iron (Fe), % 2.0 to 4.0
73.2 to 79.6
Lanthanum (La), % 0
0.040 to 0.2
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 11 to 14
0.3 to 0.8
Nickel (Ni), % 1.5 to 3.0
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0
0.030 to 0.2
Residuals, % 0 to 0.5
0