MakeItFrom.com
Menu (ESC)

C95700 Bronze vs. S44660 Stainless Steel

C95700 bronze belongs to the copper alloys classification, while S44660 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C95700 bronze and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
210
Elongation at Break, % 23
20
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 47
81
Tensile Strength: Ultimate (UTS), MPa 680
660
Tensile Strength: Yield (Proof), MPa 310
510

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 990
1460
Melting Onset (Solidus), °C 950
1410
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 12
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 26
21
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 3.3
4.3
Embodied Energy, MJ/kg 54
61
Embodied Water, L/kg 360
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
120
Resilience: Unit (Modulus of Resilience), kJ/m3 390
640
Stiffness to Weight: Axial, points 8.5
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 23
24
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 3.3
4.5
Thermal Shock Resistance, points 21
21

Alloy Composition

Aluminum (Al), % 7.0 to 8.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 71 to 78.5
0
Iron (Fe), % 2.0 to 4.0
60.4 to 71
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 11 to 14
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 1.5 to 3.0
1.0 to 3.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.0
Residuals, % 0 to 0.5
0