MakeItFrom.com
Menu (ESC)

C95800 Bronze vs. ACI-ASTM CD3MWCuN Steel

C95800 bronze belongs to the copper alloys classification, while ACI-ASTM CD3MWCuN steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C95800 bronze and the bottom bar is ACI-ASTM CD3MWCuN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 22
29
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
80
Tensile Strength: Ultimate (UTS), MPa 660
790
Tensile Strength: Yield (Proof), MPa 270
500

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 36
16
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
22
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 3.4
4.2
Embodied Energy, MJ/kg 55
58
Embodied Water, L/kg 370
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
200
Resilience: Unit (Modulus of Resilience), kJ/m3 310
620
Stiffness to Weight: Axial, points 7.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 22
28
Strength to Weight: Bending, points 20
24
Thermal Diffusivity, mm2/s 9.9
4.2
Thermal Shock Resistance, points 23
22

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 79 to 83.2
0.5 to 1.0
Iron (Fe), % 3.5 to 4.5
56.6 to 65.3
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.8 to 1.5
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 4.0 to 5.0
6.5 to 8.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Tungsten (W), % 0
0.5 to 1.0
Residuals, % 0 to 0.5
0