MakeItFrom.com
Menu (ESC)

C95800 Bronze vs. AISI 305 Stainless Steel

C95800 bronze belongs to the copper alloys classification, while AISI 305 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C95800 bronze and the bottom bar is AISI 305 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 22
34 to 45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 660
580 to 710
Tensile Strength: Yield (Proof), MPa 270
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 230
540
Melting Completion (Liquidus), °C 1060
1450
Melting Onset (Solidus), °C 1040
1400
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 36
16
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 29
16
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.4
3.2
Embodied Energy, MJ/kg 55
45
Embodied Water, L/kg 370
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
200 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 310
130 to 320
Stiffness to Weight: Axial, points 7.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 22
20 to 25
Strength to Weight: Bending, points 20
20 to 23
Thermal Diffusivity, mm2/s 9.9
4.2
Thermal Shock Resistance, points 23
13 to 15

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 79 to 83.2
0
Iron (Fe), % 3.5 to 4.5
65.1 to 72.5
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.8 to 1.5
0 to 2.0
Nickel (Ni), % 4.0 to 5.0
10.5 to 13
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0