MakeItFrom.com
Menu (ESC)

C95800 Bronze vs. ASTM A182 Grade F122

C95800 bronze belongs to the copper alloys classification, while ASTM A182 grade F122 belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C95800 bronze and the bottom bar is ASTM A182 grade F122.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 22
23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Tensile Strength: Ultimate (UTS), MPa 660
710
Tensile Strength: Yield (Proof), MPa 270
450

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 230
600
Melting Completion (Liquidus), °C 1060
1490
Melting Onset (Solidus), °C 1040
1440
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 36
24
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
10
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
12

Otherwise Unclassified Properties

Base Metal Price, % relative 29
12
Density, g/cm3 8.3
8.0
Embodied Carbon, kg CO2/kg material 3.4
3.0
Embodied Energy, MJ/kg 55
44
Embodied Water, L/kg 370
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
140
Resilience: Unit (Modulus of Resilience), kJ/m3 310
520
Stiffness to Weight: Axial, points 7.9
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 22
25
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 9.9
6.4
Thermal Shock Resistance, points 23
19

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0 to 0.020
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.070 to 0.14
Chromium (Cr), % 0
10 to 11.5
Copper (Cu), % 79 to 83.2
0.3 to 1.7
Iron (Fe), % 3.5 to 4.5
81.3 to 87.7
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.8 to 1.5
0 to 0.7
Molybdenum (Mo), % 0
0.25 to 0.6
Nickel (Ni), % 4.0 to 5.0
0 to 0.5
Niobium (Nb), % 0
0.040 to 0.1
Nitrogen (N), % 0
0.040 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0
0.15 to 0.3
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.5
0