MakeItFrom.com
Menu (ESC)

C95800 Bronze vs. EN 1.1203 Steel

C95800 bronze belongs to the copper alloys classification, while EN 1.1203 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C95800 bronze and the bottom bar is EN 1.1203 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 22
12 to 15
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
72
Tensile Strength: Ultimate (UTS), MPa 660
690 to 780
Tensile Strength: Yield (Proof), MPa 270
340 to 480

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 230
400
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 36
48
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
2.1
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.4
1.4
Embodied Energy, MJ/kg 55
19
Embodied Water, L/kg 370
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
69 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 310
310 to 610
Stiffness to Weight: Axial, points 7.9
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 22
25 to 28
Strength to Weight: Bending, points 20
22 to 24
Thermal Diffusivity, mm2/s 9.9
13
Thermal Shock Resistance, points 23
22 to 25

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0
Carbon (C), % 0
0.52 to 0.6
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 79 to 83.2
0
Iron (Fe), % 3.5 to 4.5
97.1 to 98.9
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.8 to 1.5
0.6 to 0.9
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 4.0 to 5.0
0 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Residuals, % 0 to 0.5
0