MakeItFrom.com
Menu (ESC)

C95800 Bronze vs. EN 1.4404 Stainless Steel

C95800 bronze belongs to the copper alloys classification, while EN 1.4404 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C95800 bronze and the bottom bar is EN 1.4404 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 22
14 to 43
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
78
Tensile Strength: Ultimate (UTS), MPa 660
600 to 900
Tensile Strength: Yield (Proof), MPa 270
240 to 570

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 230
950
Melting Completion (Liquidus), °C 1060
1440
Melting Onset (Solidus), °C 1040
1400
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 36
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
19
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 3.4
3.8
Embodied Energy, MJ/kg 55
52
Embodied Water, L/kg 370
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 310
140 to 800
Stiffness to Weight: Axial, points 7.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 22
21 to 32
Strength to Weight: Bending, points 20
20 to 26
Thermal Diffusivity, mm2/s 9.9
4.0
Thermal Shock Resistance, points 23
13 to 20

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 79 to 83.2
0
Iron (Fe), % 3.5 to 4.5
62.8 to 71.5
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.8 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 4.0 to 5.0
10 to 13
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Residuals, % 0 to 0.5
0