MakeItFrom.com
Menu (ESC)

C95800 Bronze vs. EN 1.4736 Stainless Steel

C95800 bronze belongs to the copper alloys classification, while EN 1.4736 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C95800 bronze and the bottom bar is EN 1.4736 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 22
28
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Tensile Strength: Ultimate (UTS), MPa 660
580
Tensile Strength: Yield (Proof), MPa 270
310

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 230
1000
Melting Completion (Liquidus), °C 1060
1420
Melting Onset (Solidus), °C 1040
1380
Specific Heat Capacity, J/kg-K 440
490
Thermal Conductivity, W/m-K 36
21
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.0
Density, g/cm3 8.3
7.6
Embodied Carbon, kg CO2/kg material 3.4
2.4
Embodied Energy, MJ/kg 55
35
Embodied Water, L/kg 370
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
140
Resilience: Unit (Modulus of Resilience), kJ/m3 310
250
Stiffness to Weight: Axial, points 7.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 22
21
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 9.9
5.6
Thermal Shock Resistance, points 23
21

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
1.7 to 2.1
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 79 to 83.2
0
Iron (Fe), % 3.5 to 4.5
77 to 81.1
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.8 to 1.5
0 to 1.0
Nickel (Ni), % 4.0 to 5.0
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.2 to 0.8
Residuals, % 0 to 0.5
0