MakeItFrom.com
Menu (ESC)

C95800 Bronze vs. EN 1.4805 Stainless Steel

C95800 bronze belongs to the copper alloys classification, while EN 1.4805 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C95800 bronze and the bottom bar is EN 1.4805 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 22
9.0
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 660
490
Tensile Strength: Yield (Proof), MPa 270
250

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Maximum Temperature: Mechanical, °C 230
1000
Melting Completion (Liquidus), °C 1060
1390
Melting Onset (Solidus), °C 1040
1350
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 36
14
Thermal Expansion, µm/m-K 17
16

Otherwise Unclassified Properties

Base Metal Price, % relative 29
26
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 3.4
4.7
Embodied Energy, MJ/kg 55
66
Embodied Water, L/kg 370
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
37
Resilience: Unit (Modulus of Resilience), kJ/m3 310
150
Stiffness to Weight: Axial, points 7.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 22
17
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 9.9
3.7
Thermal Shock Resistance, points 23
11

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0
Carbon (C), % 0
0.2 to 0.5
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 79 to 83.2
0
Iron (Fe), % 3.5 to 4.5
44.9 to 56.8
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.8 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 4.0 to 5.0
23 to 27
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0