MakeItFrom.com
Menu (ESC)

C95800 Bronze vs. Grade 29 Titanium

C95800 bronze belongs to the copper alloys classification, while grade 29 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C95800 bronze and the bottom bar is grade 29 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 22
6.8 to 11
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 44
40
Tensile Strength: Ultimate (UTS), MPa 660
930 to 940
Tensile Strength: Yield (Proof), MPa 270
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 230
410
Maximum Temperature: Mechanical, °C 230
340
Melting Completion (Liquidus), °C 1060
1610
Melting Onset (Solidus), °C 1040
1560
Specific Heat Capacity, J/kg-K 440
560
Thermal Conductivity, W/m-K 36
7.3
Thermal Expansion, µm/m-K 17
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
36
Density, g/cm3 8.3
4.5
Embodied Carbon, kg CO2/kg material 3.4
39
Embodied Energy, MJ/kg 55
640
Embodied Water, L/kg 370
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
62 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 310
3420 to 3540
Stiffness to Weight: Axial, points 7.9
13
Stiffness to Weight: Bending, points 20
35
Strength to Weight: Axial, points 22
58 to 59
Strength to Weight: Bending, points 20
47 to 48
Thermal Diffusivity, mm2/s 9.9
2.9
Thermal Shock Resistance, points 23
68 to 69

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
5.5 to 6.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 79 to 83.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 3.5 to 4.5
0 to 0.25
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.8 to 1.5
0
Nickel (Ni), % 4.0 to 5.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.1
0
Titanium (Ti), % 0
88 to 90.9
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4