MakeItFrom.com
Menu (ESC)

C95800 Bronze vs. Type 4 Niobium

C95800 bronze belongs to the copper alloys classification, while Type 4 niobium belongs to the otherwise unclassified metals. There are 20 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C95800 bronze and the bottom bar is Type 4 niobium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 22
23
Poisson's Ratio 0.34
0.4
Shear Modulus, GPa 44
38
Tensile Strength: Ultimate (UTS), MPa 660
220
Tensile Strength: Yield (Proof), MPa 270
140

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Specific Heat Capacity, J/kg-K 440
270
Thermal Conductivity, W/m-K 36
42
Thermal Expansion, µm/m-K 17
7.3

Otherwise Unclassified Properties

Density, g/cm3 8.3
8.6
Embodied Water, L/kg 370
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
44
Resilience: Unit (Modulus of Resilience), kJ/m3 310
93
Stiffness to Weight: Axial, points 7.9
6.8
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 22
7.2
Strength to Weight: Bending, points 20
9.5
Thermal Diffusivity, mm2/s 9.9
18
Thermal Shock Resistance, points 23
21

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0
Carbon (C), % 0
0 to 0.010
Copper (Cu), % 79 to 83.2
0
Hafnium (Hf), % 0
0 to 0.020
Hydrogen (H), % 0
0 to 0.0015
Iron (Fe), % 3.5 to 4.5
0 to 0.010
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.8 to 1.5
0
Molybdenum (Mo), % 0
0 to 0.050
Nickel (Ni), % 4.0 to 5.0
0 to 0.0050
Niobium (Nb), % 0
98.1 to 99.2
Nitrogen (N), % 0
0 to 0.010
Oxygen (O), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.0050
Tantalum (Ta), % 0
0 to 0.5
Titanium (Ti), % 0
0 to 0.020
Tungsten (W), % 0
0 to 0.050
Zirconium (Zr), % 0
0.8 to 1.2
Residuals, % 0 to 0.5
0