MakeItFrom.com
Menu (ESC)

C95800 Bronze vs. C17465 Copper

Both C95800 bronze and C17465 copper are copper alloys. They have 83% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C95800 bronze and the bottom bar is C17465 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 22
5.3 to 36
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
44
Tensile Strength: Ultimate (UTS), MPa 660
310 to 930
Tensile Strength: Yield (Proof), MPa 270
120 to 830

Thermal Properties

Latent Heat of Fusion, J/g 230
210
Maximum Temperature: Mechanical, °C 230
210
Melting Completion (Liquidus), °C 1060
1080
Melting Onset (Solidus), °C 1040
1030
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 36
220
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
22 to 51
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
23 to 52

Otherwise Unclassified Properties

Base Metal Price, % relative 29
45
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 3.4
4.1
Embodied Energy, MJ/kg 55
64
Embodied Water, L/kg 370
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
47 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 310
64 to 2920
Stiffness to Weight: Axial, points 7.9
7.3
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 22
9.7 to 29
Strength to Weight: Bending, points 20
11 to 24
Thermal Diffusivity, mm2/s 9.9
64
Thermal Shock Resistance, points 23
11 to 33

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0 to 0.2
Beryllium (Be), % 0
0.15 to 0.5
Copper (Cu), % 79 to 83.2
95.7 to 98.7
Iron (Fe), % 3.5 to 4.5
0 to 0.2
Lead (Pb), % 0 to 0.030
0.2 to 0.6
Manganese (Mn), % 0.8 to 1.5
0
Nickel (Ni), % 4.0 to 5.0
1.0 to 1.4
Silicon (Si), % 0 to 0.1
0 to 0.2
Tin (Sn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.5
Residuals, % 0
0 to 0.5