MakeItFrom.com
Menu (ESC)

C95800 Bronze vs. C18700 Copper

Both C95800 bronze and C18700 copper are copper alloys. They have 81% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C95800 bronze and the bottom bar is C18700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 22
9.0 to 9.6
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
43
Tensile Strength: Ultimate (UTS), MPa 660
290 to 330
Tensile Strength: Yield (Proof), MPa 270
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 230
210
Maximum Temperature: Mechanical, °C 230
200
Melting Completion (Liquidus), °C 1060
1080
Melting Onset (Solidus), °C 1040
950
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 36
380
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
98
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
99

Otherwise Unclassified Properties

Base Metal Price, % relative 29
30
Density, g/cm3 8.3
9.0
Embodied Carbon, kg CO2/kg material 3.4
2.6
Embodied Energy, MJ/kg 55
41
Embodied Water, L/kg 370
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 310
240 to 280
Stiffness to Weight: Axial, points 7.9
7.1
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 22
9.0 to 10
Strength to Weight: Bending, points 20
11 to 12
Thermal Diffusivity, mm2/s 9.9
110
Thermal Shock Resistance, points 23
10 to 12

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0
Copper (Cu), % 79 to 83.2
98 to 99.2
Iron (Fe), % 3.5 to 4.5
0
Lead (Pb), % 0 to 0.030
0.8 to 1.5
Manganese (Mn), % 0.8 to 1.5
0
Nickel (Ni), % 4.0 to 5.0
0
Silicon (Si), % 0 to 0.1
0
Residuals, % 0
0 to 0.5