MakeItFrom.com
Menu (ESC)

C95800 Bronze vs. S44635 Stainless Steel

C95800 bronze belongs to the copper alloys classification, while S44635 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C95800 bronze and the bottom bar is S44635 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 22
23
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
81
Tensile Strength: Ultimate (UTS), MPa 660
710
Tensile Strength: Yield (Proof), MPa 270
580

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 36
16
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
22
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.4
4.4
Embodied Energy, MJ/kg 55
62
Embodied Water, L/kg 370
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
150
Resilience: Unit (Modulus of Resilience), kJ/m3 310
810
Stiffness to Weight: Axial, points 7.9
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 22
25
Strength to Weight: Bending, points 20
23
Thermal Diffusivity, mm2/s 9.9
4.4
Thermal Shock Resistance, points 23
23

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
24.5 to 26
Copper (Cu), % 79 to 83.2
0
Iron (Fe), % 3.5 to 4.5
61.5 to 68.5
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.8 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 4.0 to 5.0
3.5 to 4.5
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8
Residuals, % 0 to 0.5
0