MakeItFrom.com
Menu (ESC)

C95820 Bronze vs. AISI 436 Stainless Steel

C95820 bronze belongs to the copper alloys classification, while AISI 436 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C95820 bronze and the bottom bar is AISI 436 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 15
25
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 730
500
Tensile Strength: Yield (Proof), MPa 310
270

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 230
880
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1020
1410
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 38
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 29
12
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.5
2.7
Embodied Energy, MJ/kg 56
38
Embodied Water, L/kg 380
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
110
Resilience: Unit (Modulus of Resilience), kJ/m3 400
190
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 24
18
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 11
6.7
Thermal Shock Resistance, points 25
18

Alloy Composition

Aluminum (Al), % 9.0 to 10
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 77.5 to 82.5
0
Iron (Fe), % 4.0 to 5.0
77.8 to 83.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
0.75 to 1.3
Nickel (Ni), % 4.5 to 5.8
0
Niobium (Nb), % 0
0 to 0.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.020
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.8
0