MakeItFrom.com
Menu (ESC)

C95820 Bronze vs. S32950 Stainless Steel

C95820 bronze belongs to the copper alloys classification, while S32950 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C95820 bronze and the bottom bar is S32950 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 15
17
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
80
Tensile Strength: Ultimate (UTS), MPa 730
780
Tensile Strength: Yield (Proof), MPa 310
550

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 1080
1430
Melting Onset (Solidus), °C 1020
1390
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 38
16
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
17
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.5
3.4
Embodied Energy, MJ/kg 56
47
Embodied Water, L/kg 380
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
120
Resilience: Unit (Modulus of Resilience), kJ/m3 400
730
Stiffness to Weight: Axial, points 8.0
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 24
28
Strength to Weight: Bending, points 22
24
Thermal Diffusivity, mm2/s 11
4.3
Thermal Shock Resistance, points 25
21

Alloy Composition

Aluminum (Al), % 9.0 to 10
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
26 to 29
Copper (Cu), % 77.5 to 82.5
0
Iron (Fe), % 4.0 to 5.0
60.3 to 69.4
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
1.0 to 2.5
Nickel (Ni), % 4.5 to 5.8
3.5 to 5.2
Nitrogen (N), % 0
0.15 to 0.35
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 0.6
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.020
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.8
0