MakeItFrom.com
Menu (ESC)

C96200 Copper-nickel vs. ACI-ASTM CB6 Steel

C96200 copper-nickel belongs to the copper alloys classification, while ACI-ASTM CB6 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C96200 copper-nickel and the bottom bar is ACI-ASTM CB6 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 23
18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 46
77
Tensile Strength: Ultimate (UTS), MPa 350
880
Tensile Strength: Yield (Proof), MPa 190
660

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 220
870
Melting Completion (Liquidus), °C 1150
1440
Melting Onset (Solidus), °C 1100
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 45
17
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
12
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.8
2.5
Embodied Energy, MJ/kg 58
36
Embodied Water, L/kg 300
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68
150
Resilience: Unit (Modulus of Resilience), kJ/m3 150
1110
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11
32
Strength to Weight: Bending, points 13
26
Thermal Diffusivity, mm2/s 13
4.6
Thermal Shock Resistance, points 12
31

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.060
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 83.6 to 90
0
Iron (Fe), % 1.0 to 1.8
74.4 to 81
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 9.0 to 11
3.5 to 5.5
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Residuals, % 0 to 0.5
0